Telegram Group & Telegram Channel
Почему удаление высоко коррелированных признаков считается хорошей практикой?

Удаление высоко коррелированных признаков считается хорошей практикой по нескольким причинам:

▫️Устранение мультиколлинеарности
Когда два или более признаков имеют высокую корреляцию, это может привести к проблеме мультиколлинеарности, особенно в линейных моделях, таких как линейная регрессия и логистическая регрессия. Мультиколлинеарность означает, что признаки не несут дополнительной информации, что приводит к нестабильности коэффициентов модели. Модель может стать чувствительной к малым изменениям в данных, что вызывает большие изменения в оценке параметров.

▫️Снижение размерности
Каждый добавленный признак увеличивает размерность пространства признаков, что усложняет модель. Это может привести к проблеме, известной как «проклятие размерности» (curse of dimensionality). В пространствах высокой размерности расстояния между точками увеличиваются, и данные становятся более разреженными. Это затрудняет обучение модели, так как для правильного обобщения данных требуется больше наблюдений, чтобы покрыть все возможные комбинации признаков. Удаление коррелированных признаков помогает уменьшить размерность и улучшить работу модели.

▫️Улучшение интерпретируемости модели
Когда признаки высоко коррелированы, интерпретировать влияние каждого признака на итоговый результат модели становится сложно. Например, в линейных моделях трудно определить, какой из коррелированных признаков на самом деле влияет на результат, так как они могут взаимозависимо изменять коэффициенты друг друга.

#машинное_обучение



tg-me.com/ds_interview_lib/616
Create:
Last Update:

Почему удаление высоко коррелированных признаков считается хорошей практикой?

Удаление высоко коррелированных признаков считается хорошей практикой по нескольким причинам:

▫️Устранение мультиколлинеарности
Когда два или более признаков имеют высокую корреляцию, это может привести к проблеме мультиколлинеарности, особенно в линейных моделях, таких как линейная регрессия и логистическая регрессия. Мультиколлинеарность означает, что признаки не несут дополнительной информации, что приводит к нестабильности коэффициентов модели. Модель может стать чувствительной к малым изменениям в данных, что вызывает большие изменения в оценке параметров.

▫️Снижение размерности
Каждый добавленный признак увеличивает размерность пространства признаков, что усложняет модель. Это может привести к проблеме, известной как «проклятие размерности» (curse of dimensionality). В пространствах высокой размерности расстояния между точками увеличиваются, и данные становятся более разреженными. Это затрудняет обучение модели, так как для правильного обобщения данных требуется больше наблюдений, чтобы покрыть все возможные комбинации признаков. Удаление коррелированных признаков помогает уменьшить размерность и улучшить работу модели.

▫️Улучшение интерпретируемости модели
Когда признаки высоко коррелированы, интерпретировать влияние каждого признака на итоговый результат модели становится сложно. Например, в линейных моделях трудно определить, какой из коррелированных признаков на самом деле влияет на результат, так как они могут взаимозависимо изменять коэффициенты друг друга.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/616

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Библиотека собеса по Data Science | вопросы с собеседований from ye


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA